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ABSTRACT

This paper addresses a bias problem in the estimate of wavelet power spectra for atmospheric and oceanic
datasets. For a time series comprised of sine waves with the same amplitude at different frequencies the
conventionally adopted wavelet method does not produce a spectrum with identical peaks, in contrast to a
Fourier analysis. The wavelet power spectrum in this definition, that is, the transform coefficient squared
(to within a constant factor), is equivalent to the integration of energy (in physical space) over the influence
period (time scale) the series spans. Thus, a physically consistent definition of energy for the wavelet power
spectrum should be the transform coefficient squared divided by the scale it associates. Such adjusted
wavelet power spectrum results in a substantial improvement in the spectral estimate, allowing for a
comparison of the spectral peaks across scales. The improvement is validated with an artificial time series
and a real coastal sea level record. Also examined is the previous example of the wavelet analysis of the
Niño-3 SST data.

1. Introduction

Wavelet analysis may be advantageous over the clas-
sical Fourier analysis in that it unfolds a time series not
only in frequency but also in time, which is especially
useful when the signal is nonstationary. Because of this
property, wavelet analysis has been widely applied
across disciplines since its introduction in the early
1980s. See Daubechies (1992), Chui (1992), Meyer
(1992), Strang and Nguyen (1997), Percival and Walden
(2000), and references therein, for a historical account.
Applications in atmospheric and oceanic sciences have
also been documented for over a decade (e.g., Gamage
and Blumen 1993; Liu 1994; Gu and Philander 1995;
Willemsen 1995; Liu and Miller 1996; Wang and Wang
1996; Percival and Mofjeld 1997; Haus et al. 1999; Haus
and Graber 2000); several useful reviews on this topic
can be found in Meyers et al. (1993), Lau and Weng

(1995), Torrence and Compo (1998, hereafter TC98),
Domingues et al. (2005), and Labat (2005), to name a
few. Among these, TC98 is probably the most cel-
ebrated one, with over 800 citations so far. A practical
step-by-step guide is given, and software packages in
FORTRAN, IDL, and MATLAB languages are pro-
vided for free download from their Web site (http://
atoc.colorado.edu/research/wavelets/).

It has been observed in the atmosphere–ocean com-
munity that wavelet power spectra are distorted or bi-
ased in favor of large scales or low frequencies [see the
frequently asked questions (FAQs) on Torrence and
Compo’s above-mentioned Web site and also the docu-
ments of the associated software]. That is to say, for a
time series comprising two sine waves of the same am-
plitude but distinct frequencies, a wavelet analysis will
yield two spectral peaks of different magnitude, the one
on the low frequency being larger. This counters our
expectation and is also in contrast to the result of any
classical global analysis such as Fourier transform, mak-
ing comparison of the peaks across the scales impos-
sible. For this reason, it is suggested that if sharp peaks

Corresponding author address: Yonggang Liu, School of Ocean-
ography, University of Washington, Box 355351, Seattle, WA
98195.
E-mail: yliu18@gmail.com

DECEMBER 2007 L I U E T A L . 2093

DOI: 10.1175/2007JTECHO511.1

© 2007 American Meteorological Society

JTECH2108



are found in a power spectrum, then certain types of
wavelet spectra should not be used to determine their
relative magnitudes (see the above-mentioned online
FAQs). This issue may greatly limit the usage of wave-
let analysis in solving real atmosphere–ocean problems,
as sharp peaks are more often than not identified.

On the other hand, the equivalence in different scale
reconstructions has been rigorously established be-
tween the orthonormal localized transforms such as
wavelet transform and the global analyses such as the
average-departure decomposition for stationary time
series (cf. Liang and Anderson 2007, hereafter LA06).
This implies that the spectra resulting from the global
and the local analyses should be consistent. In other
words, there should not be such spectral “bias.” The
wavelet spectral estimates in the mainstream of the
community need improvements. [Some wavelet appli-
cations do not have this bias problem, e.g., Liang and
Robinson (2004).] The purpose of this paper is to ad-
dress this bias problem.

The rest of this paper is arranged as follows. The bias
problem is further illustrated with a real ocean time
series in section 2. In section 3, theoretical derivations
are followed to shed light on what is underlying a power
spectral analysis. A physically consistent definition of
energy, and hence an alternate formalism of power
spectrum, are proposed, which allows for a solution of
the problem. The improvement of the biased spectrum
by the new formalism is validated in sections 4, 5, and 6,
respectively, with idealized and real world examples. A
summary and discussion are then provided in section 7.

2. The raising of the issue

a. Data and data processing

Time series of hourly coastal sea level at St. Peters-
burg, Florida, are from the National Oceanic and At-
mospheric Administration/National Ocean Service
(NOAA/NOS) (http://www.co-ops.nos.noaa.gov) from
January 1993 through December 2005. After quality
control, the sea level record is de-tided by removing the
four major tidal constituents: M2, S2, K1, and O1, using
the T_Tide Harmonic Analysis Toolbox of Pawlowicz
et al. (2002). It is then 48-h low-pass filtered, 12-h sub-
sampled, and adjusted for the inverse barometer effect.
Now the time series contains mainly subtidal sea level
variations (Fig. 1, top). The air pressure data are from
two NOAA/National Data Buoy Center (NDBC) sta-
tions, 42036 and VENF1 (Venice, Florida) (http://
www.ndbc.noaa.gov/), and from University of South
Florida surface buoys on the West Florida Shelf. The
locations of the sea level and meteorological stations
can be found in Fig. 1 of Liu and Weisberg (2005a).

b. The wavelet power spectrum based on TC98

The MATLAB wavelet package of TC98 is used to
analyze the subtidal sea level time series. Following the
guide of TC98, the wavelet parameters are chosen as
follows. The wavelet base function is chosen to be Mor-
let, which is often used in analyzing geophysical data. A
start scale of 2 days is specified since this is the smallest
actual time scale for the 48-h low-pass-filtered time se-
ries. The spacing between the discrete scales, dj, is cho-
sen as 1/8; that is, there are 8 suboctaves per octave.
The total number of scales is determined by both dj and
j1, where j1 is the number of the octaves; here it is set to
be 9. Thus, there are dj � j1 � 1 � 73 scales ranging
from 2 to 1024 days. The wavelet transform is converted
to wavelet power spectrum as instructed in the sample
MATLAB program.

The wavelet power spectrum of the subtidal St. Pe-
tersburg sea level is shown in the middle panel of Fig. 1.
To our surprise, the spectrum is seriously biased in the
frequency domain, so that the annual time scales out-
perform the synoptic weather time scales so much that
the latter seems negligible in the wavelet power spec-
trum. This is unacceptable for the subtidal sea level
fluctuations on the West Florida Shelf (WFS), where
the synoptic winds play a dominant role on the inner
WFS circulation and hence affect the coastal sea level
fluctuation on synoptic time scales (e.g., Marmorino
1982; Mitchum and Sturges 1982; Cragg et al. 1983; Li
and Weisberg 1999; He et al. 2004; Liu and Weisberg
2005a,b, 2007; Liu et al. 2007; Weisberg et al. 2005).
Thus, the usefulness of the wavelet analysis seems to be
doubtful for the subtidal sea level data.

Statistical significance testing is also provided in
TC98. In the middle panel of Fig. 1, the black contour
encloses regions of greater than 90% confidence for a
red-noise process with a lag-1 coefficient of 0.9. It can
be seen that these regions include both the synoptic and
annual time scales; that is, the wavelet spectra are sta-
tistically significant on these two time scales. The bi-
ased wavelet spectrum needs improvement, at least vi-
sually, to be consistent with the statistical significance
test.

3. Energy and physically consistent wavelet power
spectrum

To resolve the problem, we need to go back to the
definition of energy in functional analysis. A rigorous
treatment and detailed interpretation in the context of
atmospheres and oceans is referred to by Liang and
Robinson (2005). Some of the facts pertaining to wave-
let transform are briefly presented in this section.
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Suppose we have a time series f(t), where t is defined
on some finite interval that may be assumed to be [0, 1]
without loss of generality. If t is not in this range, a
rescaling can always make it so. Suppose the wavelet
basis is

� n
j �t� � 2�j�2��2jt � n�, �1�

where t is on the real line ℜ, integers j and n are the
scale level (2�j the scale) and the time location, respec-
tively; and � is the mother wavelet that forms an or-
thonormal set with respect to j and n in the function

space1 over ℜ. The finite interval must be extended to
the whole real line before an analysis can be performed.
Commonly used extension schemes include zero pad-
ding, periodization, and extension by reflection (cf.
Strang and Nguyen 1997); for example, zero padding is
used in TC98. It has been proved that a scheme of these
essentially introduces another basis for the function
space over [0, 1], which also forms an orthonormal set

1 We always study the problems in some L2 space, that is, a
space containing square integrable functions over the definition
domain.

FIG. 1. (top) The time series of St. Petersburg sea level after 48-h low-pass filtering and 12-h subsampling. Also shown are the
(middle) original and (bottom) rectified wavelet power spectra in logarithm (base 2). The regions of greater than 90% confidence are
shown with black contours. Cross-hatched regions on either end indicate the “cone of influence,” where edge effects become important.
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therein (LA07).2 It suffices to write the new basis sym-
bolically as �̃ j

n(t), t ∈ [0, 1]. Detailed expression can be
found in LA07 (their section 2.3) or, when only peri-
odization is used, in Meyer (1992). Here �̃ j

n is a “modi-
fied wavelet basis” from � j

n. The wavelet transform
now can be identically expressed with �̃j

n over [0, 1].
The transform–reconstruction pair of f is thereby

f̂ n
j � �

0

1

f�t��̃ n
j �t� dt, j � 0, n � 0, 1, . . . , 2j � 1, �2�

f�t� � f0 � �
j�0

�

�
n�0

2j�1

f̂ n
j �̃ n

j �t�, �3�

where f0 is a part related to scales larger than the time
span, on which we do not intend to elaborate; in the
case of extension by periodization, this part is simply
the mean over [0, 1], as proved by LA07 (theorem 4.2).
Notice the range in which n runs; it is a finite set and
scale dependent. On a specific scale level j, the recon-
struction, that is, the projection of f onto the subspace
containing only features of scale 2-j, is

f j�t� � �
n�0

2 j�1

f̂ n
j �̃ n

j �t�, t ∈ 	0, 1
, j � 0. �4�

We do not consider scale level j � 0 here, as it contains
an extra term that is not helpful to our illustrative pur-
pose. In Eq. (4), the f j(t) is a (1D) field variable. The
energy on scale level j at time t is then simply [ f j(t)]2, up
to some constant factor as needed. How is the energy
represented by the transform coefficients f̂ j

n?
A theorem connecting the phase space representa-

tion and the physical space field quantity answers the
question. This is the generalized Parseval relation. In an
L2 space, as considered here, it reads, if the transform is
orthonormal,3

�
0

1

	f j�t�
2 dt � �
n�0

2 j�1

	 f̂ n
j 
2. �5�

The lhs is the energy in the physical sense, followed by
an integration with respect to t over its definition do-
main; the rhs is the summation of N � 2j parts, each

part representing the process on a small interval Dn

centered around t � 2�jn, with a length of �t � 1/N �
2�j. We may replace the lhs integration by a Riemann
sum of N parts, according to the middle value theorem
of integral,

�
0

1

	f j�t�
2 dt � �
n�0

2 j�1

	f j�tn�
2�tn, �6�

where �tn � �t, and tn lies somewhere on the small
interval Dn. Here f j(tn) is a field variable at time loca-
tion tn, and [ f j(tn)]2 is the energy in the physical sense
(to within some constant factor), denoted by Ej

n. Com-
paring (5) and (6), we have

�
n�0

2 j�1

En
j �tn � �

n�0

2 j�1

	f̂ n
j 
2. �7�

So, a physically consistent definition of energy at loca-
tion n (corresponding to t � 2�jn) and scale level j
(corresponding to scale 2�j) in terms of the wavelet
transform coefficients should be

En
j �

1
�t

	 f̂ n
j 
2 � 2j � 	 f̂ n

j 
2. �8�

We now can see why the wavelet spectral analysis
widely adopted in the community (such as that in
TC98) produces “biased” power spectra. The energy as
conventionally defined is simply the square of f̂ j

n, lack-
ing the factor 2 j, the inverse of the scale. For two modes
with identical amplitudes but different frequencies/
scales, the power unfolded on the conventional wavelet
spectrum appears different: The higher the scale level
(smaller scale), the smaller the “energy”; that is, the
high-frequency peaks tend to be underestimated. This
is exactly what is often observed in the real application
exercises, as documented by Torrence and Compo in
the previously mentioned FAQ section of their Web
site.

Lying at the heart of the conventional energy defini-
tion is the confusion between the energy and the inte-
gration of energy with respect to time: f̂ j

n is not a quan-
tity just for the instant 2�jn but a “bulk” variable con-
taining information all over the neighborhood.
Actually, the classical power spectral analyses also have
the same problem; that is, we should multiply the
square of the transform coefficients by some factor (in-
verse of the time span) to define the physically consis-
tent energy. However, in a global analysis such as Fou-
rier transform the factor is independent of scale, so the
problem is disguised and is not an issue. In contrast, for
localized analyses built on the basis of multiresolution
analysis (Meyer 1992) such as wavelet transform, this

2 What LA07 proved is with respect to a scaling function , or
“father wavelet” (e.g., Meyer 1992). By multiresolution analysis,
the subspace generated by {� j

n}n is an orthogonal complement to
that by { j

n}n in the space generated by the scaling basis at a higher
level, { j�1

n }n; the corollary with respect to wavelet functions thus
follows immediately.

3 This is not precisely true when an extension by reflection is
used. But a similar theorem, called property of marginalization,
applies. See LA07 (theorem 4.3).
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issue surfaces. In an energetics analysis with a localized
transform developed by themselves, Liang and Robin-
son (2005, pp. 203 and 222) emphasized the importance
of the factor in physical process studies several times.

The above derivations rely on the orthonormality of
the wavelet basis. We know that many popular wavelet
transforms are not orthonormal or are with redundant
sets called “frames” (e.g., Strang and Nguyen 1997).
Strictly speaking, no notion of energy can even be in-
troduced in a functional analysis if the basis is not or-
thonormal, as the energy thus defined is not conserved
[Liang and Robinson 2005, LA07, their section 5, par-
ticularly Eq. (5.2)]. But in a loose sense, we may just use
the above notion in the power spectrum calculation,
that is, multiplying the conventionally produced spectra
by 2 j (or dividing by the corresponding scale) to ensure
physical consistency.

A final remark is on basis orthonormality. As men-
tioned above, rigorously there is no notion of energy in
the sense of physics with nonorthonormal transforms.
Although such wavelet transforms prove to be very use-
ful in areas such as data compression and pattern iden-
tification, caution should be exercised when applying
the results to real physical processes. For the same rea-
son, spectra with different nonorthornormal bases may
display the same pattern differently, because the pro-
cess thus represented is not unique. In a field like at-
mosphere–ocean science, orthonormal analyses may
need to be favored over nonorthonormal ones. Fortu-
nately, it is easy to orthonormalize a basis if it possesses
certain properties, as elucidated in Strang and Nguyen
(1997). An organized treatment of orthonormalization
can also be found in LA07 (their section 7.2).

4. The example problem revisited

The wavelet analysis of the St. Petersburg sea level
time series is revisited. The power at each point in the
spectrum is divided by the corresponding scale, based
on the energy definition (8). The result is very encour-
aging (Fig. 1, bottom). The spectrum values over the
synoptic time scales are enlarged and are now compa-
rable to those on the annual time scales; it is also more
consistent with the 90% significance level (the black
contours in Fig. 1, middle and bottom). This makes
more sense in light of coastal oceanography. Over the
synoptic weather band the inner WFS ocean circulation
is mainly driven by the local winds (e.g., Liu and Weis-
berg 2005a,b). The synoptic weather winds are season-
ally modulated, stronger in winter but weaker in sum-
mer half years. These are displayed in the wavelet spec-
trum as a seasonal modulation of synoptic weather
band sea level variation: The synoptic weather band
energy is higher and more significant in winter than in

summer half years. We also noticed that the wavelet
energy on the annual time scales is lower in 1998. This
corresponds to an anomalous event of WFS circulation
conditions, indicative of a large interannual variation
due to the impact of the Loop Current near Dry Tor-
tugas (Weisberg and He 2003; Weisberg et al. 2005). In
a word, the rectified wavelet spectrum estimates are
now consistent with the physics of the coastal sea level
variability on the WFS.

5. Test with sine waves

The above formalism of wavelet power spectrum is
further tested with an artificial time series composed of
sine waves of known frequencies and amplitudes. Five
sine waves, with a unit amplitude and periods of 1, 8, 32,
128, and 365 days, respectively, are summed to form an
artificial time series as shown in Fig. 2 (top). The
sample interval is 1 h, and the length of the time series
is 13 yr; both are comparable with those of the St. Pe-
tersburg sea level time series. The TC98 MATLAB
program is used again, and the wavelet parameters are
chosen as those for the sea level analysis with the fol-
lowing exceptions: the start scale is 6 h, and j1 is set to
be 12 so that the scale ranges from 6 h to 1024 days,
covering the intrinsic periods of the sine waves.

The original localized wavelet power spectrum and
the time-averaged wavelet spectrum (called “global
wavelet spectrum” in TC98) are shown in the middle
panel of Fig. 2. As expected, the spectral peaks are
distorted, with the high-frequency peaks lower than the
low-frequency peaks. However, when the spectrum is
divided by the scale s, those spectral peaks have about
the same height (Fig. 2, bottom), and the biased wavelet
spectrum is rectified.

Both the original and rectified wavelet power spectra
are shown again against the Fourier power spectrum in
Fig. 3. The five Fourier spectral peaks have the same
height (Fig. 3c), which is normal as expected from au-
tospectral analysis. The improvement of the biased
wavelet spectral peaks is substantial, as seen from their
actual values (Figs. 3a,b). The bias seems much reduced
when the spectrum is shown in logarithm (Figs. 3d,e).
Maybe this partly explains why most wavelet users
choose to show their wavelet spectra in logarithm. In
Fig. 3b, the two spectral peaks at the low-frequency
part (periods of 128 and 365 days) are a little smaller
than the other three peaks (periods of 1, 8, and 32
days), which is due to the lower spectral values in the
“cone of influence” (in Fig. 2, bottom) that resulted
from zero padding (see the detailed explanation in
TC98). Recall that the wavelet power spectrum in Fig.
3b is obtained by averaging the wavelet spectrum in
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Fig. 2 (bottom) throughout the time. Thus, both the
128- and 365-day peaks are somehow underestimated.

6. Test with the Niño-3 SST data

It would be illustrative to check some previous wave-
let results to see how Eq. (8) may make a difference. A
good case study is the wavelet analysis of the Niño-3
SST data, which was given in TC98 as an example of
wavelet analysis. This dataset is also well known in both
meteorological and oceanographic communities. More

detailed information about the dataset can be found in
TC98.

The same wavelet parameters are used as those in the
MATLAB wavelet package of TC98, that is, Morlet
wavelet, starting scale of 6 months, seven powers-of-2
octaves with four suboctaves each. The original and
rectified wavelet power spectra are shown in contrast in
Fig. 4. Compared to the original wavelet spectrum,
there is a slight adjustment of the relative magnitude of
the wavelet spectrum across the frequency domain in
the rectified spectrum: the high-frequency spectrum

FIG. 2. (top) The artificial time series comprising sine waves of five different periods (1, 8, 32, 128, and 365 days). Also shown are
the (middle) original and (bottom) rectified wavelet power spectra (left column) and time-averaged wavelet power spectra (right
column) of the artificial time series. Red and blue indicate high and low wavelet power spectrum values (in base 2 logarithm),
respectively. Cross-hatched regions indicate the “cone of influence,” where edge effects become important.
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values are decreased, and the low-frequency spectrum
values are increased relatively. The adjusted wavelet
spectrum overlays better with the 95% significance con-
tours, for example, for the peak area in periods of 3�8
yr during the years 1910�1920. Changes are also found
in the time-averaged wavelet spectrum shapes; that is,
the spectral line becomes smoother. However, the ma-
jor peak is still located between the 2- and 8-yr periods.

That is, the main conclusion on the Niño-3 SST wavelet
analysis in TC98 is not affected.

7. Summary and discussion

The power spectra produced by the wavelet analysis
adopted in the mainstream community of the atmo-
sphere–ocean science such as TC98 may be distorted or

FIG. 3. Power spectra of the artificial sine waves: (a) original time-averaged wavelet power spectrum, (b) rectified time-averaged
wavelet power spectrum, (c) Fourier power spectrum; (d), (e) Same as (a) and (b), respectively, except that the wavelet power spectra
are shown in base 2 logarithm.
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biased in favor of large-scale features. Efforts have
been made for improvements by TC98 and many others
(e.g., Hudgins et al. 1993), but the problem still
exists, as revealed in the exercise with the subtidal
sea level data of St. Petersburg, Florida, using the
software provided by TC98. Unfortunately, this is-
sue was largely overlooked by most wavelet users of
the TC98 software package. In TC98, this bias was
attributed to the width of the wavelet filter in Fourier
space (TC98; also see Torrence and Compo’s Web
site at http://atoc.colorado.edu/research/wavelets/faq.
html). They explained that at small scales (high fre-
quency) the wavelet is very broad in frequency, so any
peaks in the spectrum get smoothed out; at large scales,
the wavelet is narrower in frequency, so the peaks are
sharper and have a larger amplitude. We provided an
alternate explanation and a solution to this bias prob-
lem.

We established theoretically that the so-called bias
actually results from the traditional definition of “en-

ergy” for the wavelet power spectra, which has been
simply taken as the square of the transform coefficient
(to within a constant factor). This is a convention in-
herited from the Fourier analysis, but unfortunately it is
not physically consistent. By the Parseval relation, for
analyses with an orthonormal basis, the wavelet trans-
form coefficient squared is equivalent to the integration
of the energy (in physical space) at the corresponding
instant over the influence period (time scale) the series
spans; as a result, a physically consistent definition of
energy should be, in an average sense, the transform
coefficient squared divided by the scale it associates. By
a similar but not rigorous argument, spectra from
analyses with other types of bases or redundant frames
should also be rectified in such a way to ensure physical
consistency. The traditional definition confuses the en-
ergy with the energy integrated with respect to time,
which will certainly cause a bias in the power spectrum
if the integration ranges are different for different
scales. This phenomenon stems from the multiresolu-

FIG. 4. (top row) Original and (bottom row) rectified wavelet power spectra (left column) and time-averaged wavelet power spectra
(right column) from the wavelet analysis of the Niño-3 SST time series. Red and blue contours indicate high and low wavelet power
spectrum values, respectively. The regions of greater than 95% confidence are shown with thick black contours. Cross-hatched regions
indicate the “cone of influence,” where edge effects become important.
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tion analysis, the theoretical foundation of wavelet
transform as introduced by Meyer (1992).

The traditional biased power spectra are therefore
easily rectified. For that generated by TC98, a simple
division of each energy value by the scale it corresponds
to will give the correct result. The rectification was ap-
plied to the St. Petersburg sea level time series, and the
underestimated synoptic weather band energy was
brought back to a level comparable with that on annual
time scales. The frequency distribution of the rectified
wavelet spectrum was more reasonable according to the
knowledge of coastal oceanography on the inner WFS.
The rectification was also tested with an artificial time
series composed of sine waves of known amplitudes
and frequencies, and an expected improvement of the
biased spectral peaks was obtained. Finally, the classic
example of Niño-3 SST in TC98 was reexamined. To
our surprise, a similar result is obtained from the origi-
nal and the rectified spectra. That might be the reason
why this issue has been overlooked for so long a time.

It should be pointed out that the definition of energy
such as Eq. (8) has appeared in the literature (e.g.,
Percival 1995; Percival and Mofjeld 1997), though no
thorough discussion has been documented from a
physical point of view. Unfortunately, this definition
has not received enough attention from the meteorol-
ogy and oceanography community. One possible rea-
son is that the resulting spectrum for Gaussian white
noise may no longer be flat across the scales, compared
to the flat spectrum using the conventional definition

(cf. TC98). We repeated the experiment with Gaussian
white noise and found that our spectrum tilted up to-
ward smaller scales (figure not shown). Apparently this
is still a problem that deserves further studies. To see
how this may affect our previous results, the idealized
sine wave experiment in section 5 is repeated by adding
Gaussian white noise of 50% and 100% in variance,
respectively, and the results are shown in Fig. 5. In the
spectra based on definition (8), a small amplification of
the peaks and the background spectral values is found
in the high-frequency band, while in the low-frequency
band the background noise bias is negligible (Fig. 5b).
Even for the very noisy data with a signal-to-noise ratio
of 1, the five spectral peaks are still clearly seen to have
roughly the same height in the rectified spectra, in con-
trast to those seriously biased in the original spectra.

When connecting wavelet analysis to Fourier analy-
sis, a common practice is to associate scale with fre-
quency. This is a practical convenience but is not en-
tirely true. Given a time series, a scale in the wavelet
sense actually contains a range of frequencies. That is to
say, if the space where the time series lies is decom-
posed into a direct sum of a sequence of wavelet sub-
spaces, then each subspace is actually associated with a
range of frequencies. These subspaces therefore may be
further decomposed. The resulting technique is the
well-known wavelet packet transform (e.g., Strang and
Nguyen 1997). In a wavelet packet transform, the con-
cept of frequency is more reasonably represented, but
the energy definition problem explored in this study

FIG. 5. Time-averaged wavelet power spectra of the artificial sine waves with different noise levels: noise free, and 50% and 100%
Gaussian white noise added: (a) original spectra and (b) rectified spectra.
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still exists (and becomes more complicated), as under-
lying the redecomposition is the same machinery, the
multiresolution analysis. We will leave that to future
studies.
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