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[1] Patterns of ocean current variability are examined on the West Florida Shelf by a
neural network analysis based on the self-organizing map (SOM), using time series of
moored velocity data that span the interval October 1998–September 2001. Three
characteristic spatial patterns are extracted in a 3 � 4 SOM array: spatially coherent
southeastward and northwestward flow patterns with strong currents and a transition
pattern of weak currents. On the synoptic weather timescale the variations of these patterns
are coherent with the local winds. On the seasonal timescale the variations of the patterns
are coherent with both the local winds and complementary sea surface temperature
patterns. The currents are predominantly southeastward during fall–winter months
(from October to March) and northwestward during summer months (from June to
September). The spatial patterns extracted by the (nonlinear) SOM method are
asymmetric, a feature that is not captured by the (linear) empirical orthogonal
function method. Thus we find for the synoptic weather and longer timescales that
(1) southeastward currents are generally stronger than northwestward currents, (2) the
coastal jet axis is located further offshore for southeastward currents than for
northwestward currents, and (3) the velocity vector rotations with depth are larger in
shallower water when the currents are southeastward relative to when the currents are
northwestward.
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1. Introduction

[2] Most previous observational studies of West Florida
Shelf (WFS) currents are based on limited current meter
measurements, either over short time periods within a
particular season or located relatively far offshore [Niiler,
1976; Weatherly and Martin, 1978; Blaha and Sturges,
1981; Mitchum and Sturges, 1982; Cragg et al., 1983;
Marmorino, 1982, 1983a, 1983b; Mitchum and Clarke,
1986; Halper and Schroeder, 1990; Weatherly and Thistle,
1997]. These studies generally offer little information on
either the spatial patterns or the seasonal variability of the
water motions over the shelf. Longer records with higher
vertical resolution were initiated on the WFS in 1993 using
acoustic Doppler current profilers (ADCP). On the basis of
velocity data collected at the 47 m isobath from October
1993 through January 1995, a seasonal cycle of the monthly
mean currents was hypothesized to be driven by a season-
ally varying shelf-wide baroclinic structure along with the
winds [Weisberg et al., 1996]. More recent and more
extensive coverage by ADCP moorings over the inner shelf
are available from June 1998 through December 2001,
facilitating a systematic analysis of the spatial patterns of
ocean current variability, which is the subject of our paper.

Various analysis techniques are available, including con-
ventional empirical orthogonal functions (EOF) and neural
networks. Here we employ both of these techniques and
compare their results.
[3] As an artificial neural network based on unsupervised

learning, the self-organizing map (SOM) is an effective
software tool for detecting patterns in large data sets
[Kohonen, 1982, 2001]. SOM is a nonlinear cluster analysis
mapping high-dimensional input data onto a (usually) two-
dimensional output space while preserving the topological
relationships between the input data. As a pattern recogni-
tion and classification tool, the SOM finds widespread use
across a number of disciplines [Kaski et al., 1998; Oja et al.,
2002]. Since its first climate application by Hewitson and
Crane [1994], the SOM has gained acceptance in climate
and meteorological research [Malmgren and Winter, 1999;
Cavazos, 2000; Ambroise et al., 2000; Hewitson and Crane,
2002; Hsu et al., 2002; Hong et al., 2004, 2005]. The SOM
has also been applied in oceanography by Ainsworth [1999]
and Ainsworth and Jones [1999] for chlorophyll estimates
from satellite data, by Silulwane et al. [2001] and Richardson
et al. [2002] to identify ocean chlorophyll profiles, by
Hardman-Mountford et al. [2003] to relate satellite altimeter
data with the recruitment of the Namibian sardine, by Ultsch
and Röske [2002] to predict sea level, and by Richardson et
al. [2003] and Risien et al. [2004] to extract sea surface
temperature (SST) and wind patterns from satellite data.
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[4] In this paper, the SOM is applied to moored ADCP
data to extract the spatial patterns of ocean current variations
on the WFS. The purposes are twofold: (1) to describe the
characteristic current patterns and their temporal variations
and (2) to demonstrate the usefulness of the SOM Toolbox
for such oceanographic applications.
[5] The paper is arranged as follows. Since the SOM is

relatively new to oceanography, a brief description of the
technique is given in section 2. Section 3 then describes the
data. Applications of the linear EOF and nonlinear SOM
methods are made in sections 4 and 5, respectively, where
we find fundamental differences in the revealed patterns.
Section 6 discusses these synoptic and seasonally varying
current patterns and summarizes the results.

2. Self-Organizing Map (SOM) and the
SOM Toolbox

[6] The SOM is a nonlinear, ordered, smooth mapping
of high-dimensional input data onto the elements of a
regular, low-dimensional (usually two-dimensional) array
(for more detailed discussions, see Kohonen [1982,
2001]). The SOM consists of a set of i units arranged
in a two-dimensional grid with a weight vector mi

attached to each unit that may be initialized randomly.
During the self-organizing process (e.g., the sequential
training), elements from the high-dimensional input space,
referred to as input vectors x, are presented to the SOM
and the activation of each unit for the presented input
vector is calculated. Commonly, it is the Euclidian dis-
tance between the weight vector of the unit and the input
vector that serves as the activation function. The weight
vector of the unit showing the highest activation (i.e., the
smallest Euclidian distance) is selected as the ‘‘winner,’’
ck, and is modified to more closely resemble the presented
input vector:

ck ¼ argmin kxk �mik: ð1Þ

[7] The weight vector of the winner is moved toward the
presented vector by a certain fraction of the Euclidean
distance as indicated by a time-decreasing learning rate a.
The learning rate a can be specified by a linear, power, or
inverse time function:

a tð Þ ¼
a0 1� t=Tð Þ; linear

a0 0:05=að Þt=T ; power

a0= 1þ 100t=Tð Þ; inverse

8<
: ð2Þ

where T is the training length, and a0 is the initial learning
rate. In the SOM Toolbox, the default is a linear function,
and the default a0 is 0.5 for an initial rough training session
and 0.05 for further fine tuning. Users may also provide
initial and final a values, or specify other time decreasing
functional forms. Thus the winner’s activation will be even
higher the next time the same vector is presented. Also, the
weight vectors of units in the neighborhood of the winner
are modified according to a spatiotemporal neighborhood
function e, that, similar to the learning rate, is a time-
decreasing function. Also, e decreases spatially away from
the winner. There are four types of neighborhood function

available in the SOM Toolbox: ‘‘bubble,’’ ‘‘gaussian,’’
‘‘cutgauss,’’ and ‘‘ep’’:

eci tð Þ ¼

F st � dcið Þ; bubble

exp �d2ci=2s
2
t

� �
; gaussian

exp �d2ci=2s
2
t

� �
F st � dcið Þ; cutgauss

max 0; 1� st � dcið Þ2
n o

; ep

8>>><
>>>:

ð3Þ

where st is the neighborhood radius at time t, dci is the
distance between map units c and i on the map grid and F is
a step function:

F xð Þ ¼ 0 if x < 0

1 if x � 0:

	
ð4Þ

The default neighborhood function in the SOM Toolbox is
‘‘gaussian.’’ The neighborhood radius st also decreases as a
function of time along with the learning rate a. The learning
rule, incorporating a and e is

mi t þ 1ð Þ ¼ mi tð Þ þ a tð Þ 	 e tð Þ 	 x tð Þ �mi tð Þ½ �; ð5Þ

where t denotes the current learning iteration and x
represents the currently presented input vector. This
learning procedure leads to a topologically ordered mapping
of the presented input vectors. By virtue of the neighbor-
hood function similar patterns are mapped onto neighboring
regions on the map, while dissimilar patterns are mapped
farther apart.
[8] Most of the previously referenced SOM applications

in meteorology and oceanography are based on a software
package SOM_PAK 3.1 or earlier versions [Kohonen et al.,
1995] (available at http://www.cis.hut.fi/research/som_pak),
all written in C language. Recently, a more user friendly
implementation of the SOM as a MATLAB Toolbox has
been provided by Vesanto et al. [2000]. The SOM toolbox
version 2.0 can be downloaded from the Helsinki University
of Technology, Finland: http://www.cis.hut.fi/projects/
somtoolbox.

3. Data

[9] Among the WFS moorings (Figure 1), five are bottom-
mounted and located between the 10 m to 25 m isobaths,
each with an upward looking ADCP measuring the
water column currents at 0.5 m intervals. From the 25 m
to 50 m isobaths, there are six surface buoys, each with a
downward-looking ADCP, similarly measuring the water
column currents. Most of these moorings have been main-
tained with multiple deployments for more than 3 years
(Figure 2), and the period October 1998 through September
2001 selected for analysis has the greatest commonality of
data. Additional information on the moorings and the data
editing are given by Liu and Weisberg [2005].
[10] Near-surface, middepth, and near-bottom velocity

data are extracted from each profile so that each of the
mooring sites is given equal weight in the analyses. All of
the hourly velocity data are then low-pass filtered to
eliminate oscillations on timescales shorter than 2 days,
such as tides and inertial motions. The temporal mean and
the principal axis currents at these three levels, averaged
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from October 1998 to September 2001 are shown in
Figure 3. The mean currents tend to be along isobath and
southeastward, and they are much weaker in amplitude than
the current fluctuations. The principal axes also tend to align
with the isobaths, and the ratios of the minor to major axes
of the variance ellipses vary from 0.2 (at the 10 m isobath)
to 0.7 (at the 50 m isobath). The ellipse orientations tend to
rotate anticlockwise from the surface down to the bottom,
with these net angular offsets increasing with increasing
water depth.

4. Empirical Orthogonal Function Patterns

[11] Before performing SOM analyses, we begin with the
established technique of time domain EOF [e.g., Richman,
1986; Lagerloef and Bernstein, 1988; He et al., 2003;

Espinosa-Carreon et al., 2004]. EOF analysis is the same
as principal component (PC) analysis [Hotelling, 1933].
Here we refer to the PCs as the amplitudes, which are
functions of time, of their corresponding spatial eigenfunc-
tions, or EOFs. The analysis separates the data set into
data-dependent, empirical orthogonal modes. Generally
speaking, each mode n has an associated variance, a dimen-
sional spatial pattern Fn(x), and a nondimensional time series
an(t). Thus the EOF representation of velocity anomalies is

V x; tð Þ ¼
XN
n¼1

an tð ÞFn xð Þ: ð6Þ

[12] EOF analysis requires the input data to be continu-
ous. CMP2 data is the shortest record, and it is only used to
replace the gaps in the CM2 data, as the two sites are in
close proximity. Data gaps in the other records are filled
through linear regression from adjacent stations. We per-
form the analysis by arranging the velocity time series in a
two-dimensional array such that each velocity snapshot is in
a single row vector and the time series of each velocity
component is in a single column. All u components are
placed in the first half of the rows followed by all v
components. Thus the input matrix consists of 60 columns
(10 stations � 3 levels � 2 components) � 25585 rows
(hours). The temporal mean values are removed prior to the
EOF analysis.
[13] The first EOF mode accounts for 65.0% of the

subtidal velocity variance. The eigenvector shows a coher-
ent pattern of along-shelf flows shoreward of the 50 m
isobath (Figure 4). The currents tend to be along isobath at
the mid levels, whereas they tend to turn onshore at the
near-surface level and offshore at the near-bottom level.
That is, the current vectors rotate counterclockwise from the
surface down to the bottom, and this rotation is more
pronounced in deeper water. Thus relative to the shoreline,
for downwelling the horizontal flow field pattern tends to be
convergent at the near-surface and mid levels, and divergent
at the near-bottom level, and conversely for upwelling. The
alongshore component tends to be largest around the 25 m
to 30 m isobaths, indicative of a coastal jet. This is
consistent with the coastal jet structure obtained in a
constant density numerical model simulation for the WFS
[Li and Weisberg, 1999]. The associated PC shows the
temporal variation of this spatial pattern, which occurs at

Figure 2. Time line of the ADCP mooring records. The hatched area shows the time domain of the data
on which this study is based.

Figure 1. Map of the West Florida Shelf showing
topography (isobaths units in m), acoustic Doppler current
profiler (ADCP) moorings, and wind stations. A map of the
whole Gulf of Mexico is inserted in the lower right corner,
and the square box designates our study area.
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both synoptic weather and seasonal timescales. In fall-
winter (summer) this first mode PC tends to be negative
(positive) indicating that the inner shelf currents tend to
be southeastward (northwestward). These PC variations
are visually coherent with the local winds, suggesting that
the local winds are the main driving force for the currents

over the inner shelf, and this is consistent with the
observed turning in the implied surface and bottom
Ekman layers.
[14] The second mode spatial pattern (not shown) consists

of northwestward currents along the 50 m isobath and
southeastward currents near the coast, indicating an inner

Figure 3. Mean and principal axis currents at the (left) near-surface, (center) mid, and (right) near-
bottom levels, averaged from 2 day low-pass filtered data from October 1998 through September 2001.
Note that the mean currents are much weaker than their deviations.

Figure 4. Time domain empirical orthogonal function (EOF) analysis of the 2 day low-pass filtered
currents at the three levels from October 1998 through September 2001. (top) First mode eigenvectors.
(middle) First mode PC time series. (bottom) Five day low-pass filtered, daily subsampled winds at
Venice station. The first mode EOF accounts for 65.0% of total variance.
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shelf shear structure. It only accounts for 6.4% of the total
variance. Since these patterns contain both the synoptic and
seasonal scales, further low-pass filtering does not affect
them much.

5. SOM Patterns

[15] The same data are used for the SOM analysis
except that the data gaps are ignored and data from
moorings CM2 and CMP2 are treated as two separate
time series. Thus the input matrix consists of 66 columns
(11 stations � 3 levels � 2 components) � 25585 rows.
Also, the temporal mean values are retained. The size of
the SOM array must be specified prior to the training
process. After several test runs, an SOM size of 3 � 4 was
selected. This is large enough to represent the character-

istic velocity features and small enough to be visualized
and interpreted.

5.1. SOM Array

[16] The 3 � 4 SOM array results are shown in Figure 5.
The left-hand side of the array is populated by spatially
coherent southeastward currents, while the right-hand side
shows coherent northwestward currents. Similar velocity
patterns are located adjacent to one another in this SOM
mapping, while dissimilar patterns are at opposite ends of
the SOM space, with a continuum of change occurring
across the array. For each time frame (spatial snapshot) of
the velocity time series, the best matching unit (BMU), or
the ‘‘winner,’’ can be identified according to the minimum
Euclidian distance when that frame is compared to the
12 SOM units. Similarly, the second and/or third BMU

Figure 5. A 3 � 4 self-organizing map (SOM) of the 2 day low-pass filtered velocity data at the three
levels from October 1998 through September 2001. The relative frequency of occurrence of each pattern
is shown in the upper right corner of each map.
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may also be identified; usually, they are the SOM units
adjacent to the BMU in the SOM space. Hourly time series
of the BMU for the input data is shown in Figure 6. The
temporal evolution of the BMU is coarse in Figure 6, as the
input velocity data (2 day low-pass filtered) includes both
the synoptic and seasonal variations. For a synoptic event,
the BMU may switch back and forth between patterns in a
matter of days. In order to quantify the representation of
each unit, the frequency of occurrence is computed by
summing the number of selections of that unit (the BMU)
divided by the total record length (the number of input
vectors). The relative frequency of occurrence of each unit
is shown in the upper right corner of each map in Figure 5.
Thus the SOM unit 1 represents 17.4% of the input
(subtidal) currents, showing a pattern with the strongest
southeastward currents. Its opposite counterpart, unit 11,
represents 17.3% of the data, showing a pattern with the
strongest northwestward currents.

5.2. Synoptic Variability

[17] The synoptic-scale variations of the input velocity
data from the BMU evolution are better viewed by focusing
in on specific time periods. As examples we choose four
representative months (December 1998, August 1999,
March 2000 and June 2000), as shown in Figure 7 with
the BMU plotted along with the wind time series. From the
BMU we see the preference for units 1–6 when the local
winds are upwelling favorable (directed southward), versus
units 10–12 when the winds are downwelling favorable
(directed northward). Thus the SOM units 1–6 represent
characteristic upwelling flow patterns, while the units 10–
12 represent characteristic downwelling flow patterns. Units
7–9 are transitional patterns. Note that the change of the
BMU is highly coherent with the local winds, suggesting
that the main driving force for the currents on the inner shelf
over the synoptic weather band is the local winds, consistent
with the WFS numerical model findings [e.g., He et al.,
2004].
[18] We note that the upwelling and downwelling patterns

extracted by the SOM are asymmetric (Figure 5). The
currents in the upwelling patterns are generally stronger
than those in the downwelling patterns, and the coastal jet is
located around the 25 m to 30 m isobaths in the upwelling

patterns, whereas it is located closer to the coast at the
shallowest 10 m station in the downwelling patterns. More-
over, the velocity vector rotation with depth differs among
the upwelling and downwelling patterns. In the upwelling
patterns, the angular offset of about 10� along the 50 m
isobath is smaller than the 20� offset at the 10 m isobath,
i.e., the rotation increases toward the coast. The downwelling
patterns, in contrast, have angular offsets decreasing toward
the coast. These asymmetric behaviors cannot be identified
in a linear EOF analysis.

5.3. Seasonal Variability

[19] Although masked by the synoptic variations, the
seasonal variations may still be identified in Figure 6. For
example, if measured in terms of BMU selectivity, the
probability of units 10–12 is low during fall–winter (from
November through March), and similarly, the probability of
units 1–6 is low during summer (from June to September).
To better illustrate this, we calculated the climatological
monthly mean frequency of occurrence of the three charac-
teristic sets of patterns in the SOM (Figure 8). Units 1–6
dominate the winter half year from October through May,
with peak frequency of occurrence in October, and units
10–12 dominate the summer months (June, July and
September). The transition patterns, units 7–9, may occur
in all the months, but with lower frequency of occurrence.
Thus units 1–6 represent the characteristic fall–winter
patterns, whereas units 10–12 represent the characteristic
summer patterns.
[20] To better describe the seasonal variation, 15 day low-

pass filtered velocity data are used as input to the same
SOM calculations. Similar to those of the 2 day low-pass
filtered results, the 3 � 4 SOM shows three sets of flow
patterns (Figures 9 and 10). In the fall–winter patterns, the
currents tend to be southeastward in along-shelf direction
with a coastal jet located around the 30 m isobath. The near-
bottom currents have obvious onshore component near-
shore. In the summer patterns, the currents are weaker.
However, they are northwestward on the inner shelf with a
weak current core around the 20–25 m isobaths.
[21] This SOM representation of the seasonal cycle is

consistent with a monthly mean velocity climatology aver-
aged from October 1998 to September 2001 shown in

Figure 6. Temporal evolution of the best matching unit (BMU) for the 3 � 4 SOM. The tick marks on
the vertical axis correspond to the pattern numbers in the SOM (Figure 5).
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Figure 11. From October through April, the mean currents
are southeastward, with the strongest currents in January.
Following a transition in May, the mean currents turn
northwestward from June through September, but with

weaker or even southeastward currents in August. In fall–
winter months, the near-bottom currents generally have an
onshore component on the inner shelf, and the coastal jet is
located around 25–30 m isobaths. In the summer months

Figure 7. Time series of the Venice winds and the BMU for the 3 � 4 SOM during four separate
months: (top to bottom) December 1998, August 1999, March 2000, and June 2000. The wind data were
2 day low-pass filtered and were subsampled at 3 hour intervals.
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(June–July), the coastal jet is located around the 20–25 m
isobaths. These findings compare well with those of the
15 day low-pass filtered SOM results.
[22] The climatological monthly mean winds are strong

and southward from October to January, which may par-
tially explain the occurrence of the fall–winter current
patterns during those months (Figure 8). The mean winds
are northward in June and July, which may partially explain
the presence of the summer patterns in those 2 months. The
fact that the fall–winter mean winds are much stronger than
the summer mean winds helps to explain the asymmetric
strengths of the currents in the fall–winter and summer
seasons.
[23] Overlaid on these (Figure 11) maps is the monthly

mean SST climatology (composited using the 5 year daily
optimum interpolation product from 1998 to 2002 of He et
al. [2003]). Liu et al. [2005] performed a spatial analysis on
these SST data. Here we point out that the seasonal
variation of the currents is consistent with that of the SST.
In winter months, the SST is lower along the coast and
higher in the deep ocean area, with a horizontal temperature
gradient approximately pointing onshore in the across-shelf
direction. This winter SST pattern results in a density-
induced baroclinic current flowing along-shelf toward the
southeast, which would add constructively with the south-
eastward wind-driven current. The monthly mean SST
gradient is generally not as obvious in summer. However,
there is a warm tongue located over the mid shelf in August,
which favors a southeastward current on the inner shelf.
Whether or not baroclinicity by this warm tongue impacts
the August current patterns remains to be addressed.

5.4. Interannual Variation

[24] Our analysis shows that in August, the southward
flow patterns outnumber the northward flow patterns
(Figure 8), consistent with the climatological monthly mean
currents (Figure 11). This August reversal warrants further
study. We calculate the monthly mean frequency of occur-

rence of the three characteristic patterns, and show the time
series in Figure 12. Note that since the calculation is based
on 35 months, it is not surprising that the values of the
frequency of occurrence for individual months are small
(<2.5%). We note that the summation of all values in
Figure 12 equals 100%. In August 1999 both the southward
and northward patterns have about the same frequencies of
occurrence. In August 2000, the northward patterns out-
number the southward patterns by 0.5% in the frequency of
occurrence. However, in August 2001 the southward pat-
terns outnumber the northward patterns by 1.5%. An
average of the numbers across these 3 years results in the
preferred southward current pattern. This raises the question
on whether the August reversal derives from interannual
variability as opposed to being a robust feature of the annual
cycle.
[25] Interannual variation of the three dominant compos-

ite current patterns is seen during these 3 years. The total
frequency of occurrence of the southeastward flow patterns
(1–6) during the winter half year (October through March)
is 10.8%, 9.2% and 11.2% in 1998–1999, 1999–2000 and
2000–2001, respectively; and that of the northwestward
flow patterns (10–12) in summer (June and July) is 3.6%,
3.0% and 2.5% in 1999, 2000 and 2001, respectively. These
interannual changes may be related to interannual variations
in either the local (e.g., winds, Figure 12), deep ocean
forcing, or some combination thereof [Weisberg et al.,
2005]. Additional data being collected will eventually be
able to describe these interannual variations more clearly,
and this highlights the need for long time series as part of
the evolving coastal ocean observing systems that are
presently under consideration.

6. Discussion and Summary

[26] We applied both linear EOF and nonlinear neural
network (based on the SOM) analyses to examine charac-
teristic patterns of the ocean current variability on the inner

Figure 8. Climatological monthly mean winds and frequency of occurrence of the three characteristic
patterns in the SOM, averaged over the 3 year period October 1998–September 2001.
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WFS, using moored (ADCP) velocity time series that span
the 3 year interval October 1998 to September 2001. The
first mode EOF shows a coherent spatial pattern of along-
shelf currents with a coastal jet centered around the 25 m to

30 m isobaths, varying in time (as given by the fluctuating
PC time series) on both synoptic and seasonal timescales.
These spatial and temporal patterns are such that the
currents tend to flow southeastward in winter and north-

Figure 10. Same as Figure 8, except for the 15 day low-pass filtered velocity data.

Figure 9. Same as Figure 5, except for the 15 day low-pass filtered velocity data.
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Figure 11. Climatological monthly mean sea surface temperature (SST) superimposed with the currents
at the near-surface, mid, and near-bottom levels. The SST data were averaged from 5 year daily maps,
1998–2002; the currents were averaged from 2 day low-pass filtered data, October 1998–September
2001.

Figure 12. Monthly mean frequency of occurrence of the three characteristic patterns in the (bottom)
SOM and the (top) Venice winds. The wind data were 30 day low-pass filtered and 3 day subsampled.
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westward in summer, with an anticlockwise vertical rotation
from the surface down to the bottom consistent with Ekman
and geostrophic dynamics. Similar current reversals also
occur on synoptic scales in response to the wind reversals.
[27] A 3 � 4 SOM array also shows characteristic current

patterns. These group into three composite categories:
southeastward and northwestward flow patterns with strong
currents, and transitional patterns with weak currents. The
synoptic, seasonal, and interannual variations of these
current patterns are shown using different arrangements of
the BMU time series. The synoptic variations of the currents
are coherent with the local winds. The seasonal variation of
the currents is coincident with the variations of both the
local winds and the seasonal SST patterns. The currents are
dominantly southeastward during fall–winter months (from
October to March), and northwestward during summer
months (from June through September), although an anom-
aly occurs in August that may be due to interannual
variations in winds or deep ocean influence. The summer
currents tend to be weaker than the fall–winter currents.
[28] Both the EOF and SOM techniques are very useful in

extracting current patterns. The linear EOF, ordered on
variance reduction, form a complete set from which the
data may be identically reconstructed. The nonlinear SOM,
minimizing Euclidian distance between learned pattern
vectors and data vectors, preserves the data topology rather
than the variance. While the data may not be identically
reconstructed the resulting patterns may be more like the
data than any of the leading EOFs. Hence for pattern
recognition and description the SOM may have advantage
over the EOF.
[29] A significant finding identified herein by the SOM,

and not by the EOF, is that the patterns of current variability
are asymmetric with respect to upwelling (southeastward)
and downwelling (northwestward) flows. At the synoptic
weather and longer timescales, the currents in the upwelling
patterns are generally stronger than those in the downwelling
patterns, and the coastal jet is located around the 25 m to
30 m isobaths in the upwelling patterns, whereas it is
located closer to the coast at the shallowest 10 m isobath
station in the downwelling patterns. Moreover, the velocity
vector rotations with depth differ among the upwelling and
downwelling patterns. In the upwelling patterns, the an-
gular offset of about 10� along the 50 m isobath is smaller
than the 20� offset at the 10 m isobath, i.e., the rotation
increases toward the coast. The downwelling patterns, in
contrast, have angular offsets decreasing toward the coast.
Similarly, on the seasonal timescale, the currents in the
fall–winter (upwelling) patterns are much stronger than
those in the summer (downwelling) patterns, but the
coastal jet for both of these winter and summer patterns
is located around the 20 m to 30 m isobaths. Asymmetry
on the seasonal timescale is in part explained by stronger
winds in fall–winter than in summer. However, in contrast
with the seasonal timescale, the wind reversals at the
synoptic timescale are of comparable values. Asymmetry
at the synoptic scale has a basis in model simulation as
well as in the observations [Weisberg et al., 2001], where
under stratified conditions thermal wind effects lead to
disproportionately larger responses (in both magnitude and
offshore scale) for upwelling favorable winds over
downwelling favorable winds.

[30] Another attribute of the SOM is that the temporal
mean does not have to be removed prior to the analysis,
allowing the output patterns to be visualized in the same
form as the original data. This advantage is not that obvious
in our analysis, because the temporal mean currents are
much weaker than their deviations. However, it is very
useful when the temporal mean values are larger, for
instance, in sea surface temperature analyses [Richardson
et al., 2003; Liu et al., 2005].
[31] Finally, the self-organizing algorithm handles miss-

ing data without a priori estimation. From this point of view,
the (nonlinear) SOM is more convenient to use than the
(linear) EOF.
[32] One limitation of the SOM is that its size (arrange-

ment of the neurons) needs to be specified before the
training process, and this is arbitrary. A larger map (more
neurons) extracts more detailed information, whereas a
smaller map (less neurons) returns more general informa-
tion. A set of test runs were performed, and slightly
different patterns were obtained. However, all of these
patterns can be grouped to the same three characteristic
categories as presented in this paper. The training length T
(i.e., number of iterations) also affects the outcome. Small
values (e.g., T = 1) lead to underestimated velocities,
whereas large values (T > 10) give almost the same results.
Different learning rates and spatial functions were tested,
almost identical results were found when the training length
was greater than 10. With the same training length, we
found the ‘‘batch’’ training to be the fastest algorithm, and
the sequential training to be the slowest.
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