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ABSTRACT

The across-shelf structures of the ocean circulation and the associated sea surface height (SSH) variability
are examined on the west Florida shelf (WFS) for the 3-yr interval from September 1998 to December 2001.
Five sets of characteristic circulation patterns are extracted from 2-day, low-pass-filtered data using the
self-organizing map: extreme upwelling and downwelling structures with strong currents, asymmetric up-
welling and downwelling structures with moderate currents, and a set of transitional structures with weak
currents. The temporal variations of these structures are coherent with the local winds on synoptic weather
time scales. On seasonal time scales they are related to both the local winds and the water density variations.
The circulation is predominantly upwelling during autumn to spring months (October–April) and down-
welling during summer months (June–September). Coastal sea level fluctuations are related to both the
dynamical responses of the inner shelf circulation to meteorological forcing and the offshore SSH. On long
time scales, the offshore SSH variations appear to dominate, whereas on synoptic weather time scales, the
inner shelf wind-driven circulation responses are largest. The across-shelf distribution of SSH is estimated
from the velocity, hydrography, wind, and coastal sea level data, and the results are compared with satellite
altimetry data, thereby providing a means for calibrating satellite altimetry on the shelf.

1. Introduction

Wind-driven upwelling and downwelling circulations
play important roles in determining coastal ocean water
properties (Huyer 1990; Smith 1995). Observational
studies of coastal upwelling and downwelling began
with across-shelf hydrographic sections, and these were
later augmented with velocity data from across-shelf
arrays of current meters (e.g., Mooers et al. 1976;
Kundu and Allen 1976; Brink et al. 1980, 1983; Lentz et
al. 2003). Determining the across-shelf flow structures
within upwelling regions was difficult with current
meters since these sampled neither the near surface nor
the near bottom regions (Huyer 1990). The introduc-
tion of acoustic Doppler current profilers (ADCP) im-
proved on these sampling capabilities, but across-shelf
arrays of ADCPs maintained over several years are
rare.

Schematics of coastal upwelling and downwelling
structures (e.g., Huyer 1990), suggest asymmetries in
the velocity and density fields. Observations of asym-
metric behavior are few, however, in part because
coastal upwelling receives more attention than coastal
downwelling by virtue of its ecological importance
(Huyer 1983; Brink 1983; Brink et al. 1983).

Here we consider the across-shelf structure of the
circulation on the west Florida shelf (WFS) and the
relationship between the currents and the sea surface
height (SSH). The WFS is a wide, gently sloping con-
tinental shelf located in the eastern Gulf of Mexico.
Weisberg et al. (2005) reviews the circulation observed
and modeled over various time scales. Early inferences
on the WFS seasonal circulation were from drift bottles
(e.g., Tolbert and Salsman 1964). Measurements with in
situ moorings began in the 1970s (e.g., Niiler 1976; Price
et al. 1978; Weatherly and Martin 1978; Blaha and
Sturges 1981; Mitchum and Sturges 1982; Marmorino
1983a,b; Halper and Schroeder 1990; Weatherly and
Thistle 1997), but these were mostly of short duration
and with limited spatial coverage. Longer-duration
measurements with ADCPs, first at a single point (47-m
isobath) and then at multiple locations across the shelf,
began with Weisberg et al. (1996), followed by Siegel
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(1999) and Meyers et al. (2001). Following these ex-
ploratory datasets, focus was concentrated on the inner
shelf for which Liu and Weisberg (2005b) analyzed the
spatial patterns of current variability from October
1998 to September 2001. The asymmetric upwelling and
downwelling responses at synoptic scale identified by
Weisberg et al. (2001) were further described as fol-
lows: 1) southeastward currents are generally stronger
than northwestward currents, 2) the coastal jet axis is
located farther offshore for southeastward currents
than for northwestward currents, and 3) the velocity
vector rotations with depth are larger in shallower wa-
ter when the currents are southeastward relative to
when the currents are northwestward. A coherent sea-
sonal variation was also found such that during winter
the inner shelf currents tend to be upwelling favorable
(southeastward), whereas during summer they are
downwelling favorable (northwestward). Some of these
across-shelf structures and seasonality were also found
in WFS numerical model simulations (e.g., Li and Weis-
berg 1999a,b; Yang and Weisberg 1999; Weisberg et al.
2000, 2001; He and Weisberg 2002, 2003). Recently,
however, Ohlmann and Niiler (2005) in their interpre-
tation of surface drifter tracks from northern Gulf of
Mexico suggested that a circulation seasonality is not
pronounced on the WFS.

Satellite altimetry provides valuable information on
the deep ocean circulation (e.g., Douglas et al. 1987; Fu
et al. 1994; Fu and Cheney 1995; Lagerloef et al. 1999).
Direct comparisons with in situ measurements of SSH
are mostly from the open ocean using sea level records
from oil platforms (e.g., Christensen et al. 1994;
Ménard et al. 1994; Born et al. 1994; Haines et al. 2003),
island tide gauges (e.g., Mitchum 1994, 1998, 2000;
Cheney et al. 1994; Verstraete and Park 1995), and GPS
buoys (e.g., Bonnefond et al. 2003; Watson et al. 2003),
and dynamic height estimates from hydrography (e.g.,
Cheney et al. 1994; Picaut et al. 1995; Katz et al. 1995;
Menkes et al. 1995) and inverted echo sounders (e.g.,
Picaut et al. 1995; Katz et al. 1995; Teague et al. 1995).
In contrast, comparisons with SSH observations near
the coast are rare because coastal ocean altimetric ob-
servations are not as readily interpretable because of a
number of factors (Vignudelli et al. 2005). Compliment-
ing conventional altimetric sensors is a new GPS coastal
altimetry technique introduced by Treuhaft et al.
(2001). Regardless of technique the calibration of
coastal altimetry requires independent SSH estimations
within shallow water environments.

Early observational studies of the WFS sea level re-
sponses to wind forcing focused on coastal sea level
(Marmorino 1982; Cragg et al. 1983). An across-shelf
sea level distribution was examined by Marmorino

(1983b) using a tide gauge at Cedar Key, Florida, and
bottom pressure records from two offshore moorings.
Bottom pressure fluctuations were found to decay off-
shore, and the across-shelf pressure gradient was used
to estimate the along-shelf geostrophic velocity for
comparison with observed currents. In a related set of
papers, Mitchum and Clarke (1986a,b) applied a fric-
tional, wind-forced, barotropic long-wave model to the
WFS. The first of these developed an equation for the
pressure (sea level) response to along-shelf synoptic
wind forcing over a region extending from the coast to
where the water depth is three times the Ekman depth
in order to provide a boundary condition for the long-
wave model. Through comparisons with coastal sea
level they suggested that the pressure field (sea level) is
controlled by first mode long waves, consisting of the
sum of forced waves evolving with the wind stress and
a free wave generated at the Florida Keys, and a fric-
tional inner shelf correction proportional to the along-
shelf wind stress.

The present paper links the coastal ocean circulation
with the SSH and shows how coastal sea level relates to
both inner shelf and deeper ocean variations. An SSH
equation is derived that takes into account the inner
shelf contributions by the barotropic and baroclinic
along-shelf currents and the across-shelf wind stress.
Section 2 describes the datasets. Section 3 provides the
analysis methods and the SSH equation derivation.
With the SSH equation related to the velocity, hydrog-
raphy, local wind stress, and coastal sea level, there is a
basis for estimating the absolute SSH from these data.
Section 4 describes the across-shelf structures of the
inner shelf currents, and section 5 diagnoses the hydro-
graphic data to give the portion of the across-shelf cur-
rent structure due to baroclinicity. The results are com-
bined in section 6 to provide an SSH analysis and a
comparison with satellite altimetry. The findings are
then discussed and summarized in section 7.

2. Data

Five ADCP moorings were maintained between the
10- and 50-m isobaths offshore of Sarasota, Florida
(Fig. 1) from October 1998 to September 2001. Moor-
ings EC5 and EC4, located at the 10- and 20-m isobaths,
respectively, sampled with bottom-mounted, upward-
looking ADCPs that measured velocity at 0.5-m inter-
vals from 2 m off the bottom to 2–3 m from the surface.
Moorings NA2, EC3, and EC2, located at the 25-, 30-,
and 50-m isobaths, respectively, sampled with surface
buoy-mounted, downward-looking ADCPs that mea-
sured velocity at either 0.5- or 1-m intervals from 2–3 m
below the surface to 2–3 m off the bottom. The ADCPs
were either 600-kHz narrow-band or 300-kHz broad-
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band units. The velocity data at all of these moorings
were collected hourly as averages of 360 1-s samples
during the first 6 min of each hour.

Monthly hydrographic data were collected along
three WFS transects from June 1998 to December 2001.
Here we use data inshore of the 50-m isobath from two
transects taken offshore of Tampa Bay and Sarasota,
each with 10 CTD stations (Fig. 1). Figure 2 shows the
hydrographic sampling relative to the ADCP moorings.
Ancillary data include hourly winds and atmospheric
pressure at National Data Buoy Center (NDBC) Buoy
42036 and Venice, Florida, downloaded from the Na-
tional Oceanic and Atmospheric Administration
(NOAA)/NDBC Web site (http://www.ndbc.noaa.gov/),
hourly sea level at St. Petersburg, downloaded from the
NOAA/National Ocean Service (NOS) Web site
(http://www.co-ops.nos.noaa.gov/), and sea level
anomaly data merged from multialtimetry sensors
[TOPEX/Poseidon or Jason-1 � European Remote
Sensing Satellite (ERS)-1/2 or Envisat], downloaded
from the Archiving, Validation, and Interpretation of
Satellite Oceanographic data (AVISO) Web site
(http://las.aviso.oceanobs.com/las/servlets/dataset). The
sea level anomalies are defined as differences between
the observed SSH and the 7-yr mean sea level.

3. Methods

a. Methods used for extracting across-shelf
structures

1) EMPIRICAL ORTHOGONAL FUNCTIONS

Time-domain empirical orthogonal functions (EOF),
as a method for extracting patterns from time series of

spatial maps, have wide application in oceanography
(e.g., Davis 1976; Klinck 1985; Lagerloef and Bernstein
1988; Samelson et al. 2002). Based on correlation, EOF
separates data into N orthogonal modes, each with a
variance, a dimensional spatial pattern Fn(x), and a
nondimensional principal component (PC) time series
�n(t). Thus, the EOF representation of velocity anoma-
lies is

V�x, t� � �
n�1

N

�n�t�Fn�x�. �1�

2) SELF-ORGANIZING MAP

The self-organizing map (SOM) is relatively new to
oceanography. As an artificial neural network based on
unsupervised learning, the SOM is a nonlinear, ordered
mapping of high-dimensional input data onto a regu-
lar, low-dimensional (usually two-dimensional) array
(Kohonen 1982, 2001). As a pattern recognition and
classification tool, the SOM has been applied widely to
other disciplines (Kaski et al. 1998; Oja et al. 2003),
including meteorology (e.g., Hewitson and Crane 1994,
2002; Malmgren and Winter 1999; Cavazos 2000; Am-
broise et al. 2000; Niang et al. 2003; Hong et al. 2005,
2006; Reusch et al. 2007). Recent oceanographic appli-
cations are: Ainsworth and Jones (1999), Silulwane et
al. (2001), Richardson et al. (2002, 2003), Hardman-
Mountford et al. (2003), Risien et al. (2004), Liu and
Weisberg (2005b), Cheng and Wilson (2006), Leloup et
al. (2007), and Liu et al. (2006a,b, 2007a,b). Explana-
tions on the SOM workings are found in Richardson et
al. (2003) and Liu and Weisberg (2005b), and a perfor-
mance evaluation of the SOM for feature extraction is
reported by Liu et al. (2006b).

b. Sea surface height equations

Assuming a hydrostatic balance and integrating
down from the surface for a right-handed coordinate
system with z positive upward and with atmospheric
pressure set equal to zero, the pressure p at any level z is

p � �
z

�

�g dz�, �2�

where � is the free surface elevation above a zero mean
sea surface elevation and g is the gravitational accel-
eration. Let the density � consist of a reference value
(�0) and a perturbation (	),

� � �0
1 � ��x, z��, �3�

FIG. 1. West Florida shelf topography (isobaths; m) and the
locations of the ADCP, CTD, wind, and coastal sea level stations.
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where x is in the across-shelf coordinate directed, posi-
tive onshore. From Eqs. (2) and (3), the horizontal
pressure gradient in the across-shelf direction is

1
�0

�p

�x
� g

��

�x
� g�

z

� ���x, z��

�x
dz�. �4�

Integrating over the water column, using an integration
by parts for the second term on the right-hand side,
yields

1
�0
�

�H

0 �p

�x
dz � gH

��

�x
� gH�

�H

0 �1 �
z

H� ���x, z�

�x
dz,

�5�

where H is the bottom depth, and assuming � K H
(e.g., Csanady 1979).

Over synoptic and longer time scales, the dominant
terms in the depth-averaged, across-shelf momentum
balance on the WFS are the Coriolis, the pressure gra-
dient and the wind stress terms (Liu and Weisberg
2005a)

�f � � �
1

�0H �
�H

0 �p

�x
dz �

�x

�0H
. �6�

The along-shelf component of wind stress enters this
across-shelf component equation implicitly through the
pressure gradient set up by Ekman layer divergence,
whereas the across-shelf component of wind stress, x,
is explicit. Substituting the pressure gradient term from
Eq. (5), Eq. (6) becomes

�f � � �g
��

�x
� g�

�H

0 �1 �
z

H� ���x, z�

�x
dz �

�x

�0H
.

�7�

Rearranging Eq. (7) and integrating in the across-shelf
direction to solve for �, the across-shelf SSH distribu-
tion, �(x), may be expressed as

� � �0 � �b � �c � �w, �8�

�b � �
0

x f�

g
dx, �8a�

�c � ��
0

x �
�H

0 �1 �
z

H� ���x, z�

�x
dz dx, and �8b�

�w � �
0

x �x

�0gH
dx, �8c�

where �0 is the reference sea level at the initial inte-
gration point (the 50-m isobath in this paper), �b, �c,
and �w are SSH contributions from the along-shelf
depth averaged (barotropic) and baroclinic currents,
and the across-shelf wind stress, respectively, which
may each be estimated from the observed along-shelf
currents, the hydrography, and the across-shelf wind
stress, respectively.

Equation (8b) may be written as

�c � �
f

gH �
0

x �
�H

0

�g�x, z� dz dx, �9�

where �g is the relative along-shelf baroclinic geo-
strophic velocity,

�g �
g

f �z

0 ���x, z��

�x
dz�. �10�

By definition of the thermal wind relation, �g is essen-
tially the vertical shear between the currents at two
levels. Thus, �g may be calculated directly from the cur-
rent vertical profiles. Equation (9) then provides an

FIG. 2. A timeline diagram showing the acquired concurrent observations of the ADCP (solid lines) and CTD
data at the Sarasota (times signs) and Tampa Bay (circles) transects.
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alternate method to estimate �c from the along-shelf
currents’ vertical shear.

4. Across-shelf structure of velocity from the
moored ADCPs

a. EOF results

To focus on the subtidal variability the velocity data
are first low-pass filtered using a cutoff of two days.
Five vertical levels extending from the near surface to
the near bottom are extracted from each profile so that
each of the mooring sites is afforded equal weight in the
analysis. Since a time-domain EOF analysis requires
continuous input data the longer data gaps at mooring
EC2 are filled by linear regression using data at moor-
ings CM2 and CM3, all located along the same (50 m)
isobath. Smaller data gaps in other records are filled
through linear regression from adjacent stations. The
velocity time series are arranged in a two-dimensional
array such that each velocity snapshot is in a single row
vector and the time series of each velocity component is
in a single column. All u components are placed in the
first half of the rows followed by all � components.
Thus, the input matrix consists of 50 columns (5 stations
� 5 levels � 2 components) � 28 201 rows (hours), and
the temporal mean values are removed prior to the
EOF analysis. While the east and north velocity com-
ponents are used in the EOF analysis (so that the ma-
trix will not be ill conditioned) the velocity eigenvector
is then rotated to the across- and along-shelf directions
for visualization.

The first EOF mode accounts for 71.3% of the total
subtidal velocity variance. The eigenvector shows a co-
herent pattern shoreward of the 50-m isobath (Fig. 3).
The along-shelf currents have the same sign across the
inner WFS with a current core located subsurface in the
vicinity of the 25–30-m isobaths. The across-shelf cur-
rents have opposite signs near the surface and the bot-
tom, consistent with the along-shelf current directions
and the traditional Ekman–geostrophic structure of
coastal upwelling/downwelling. The along-shelf cur-
rents are an order of magnitude larger than the across-
shelf currents. The associated PC shows the temporal
variations that occur on synoptic and seasonal time
scales. In winter (summer) this first-mode PC tends to
be negative (positive) indicating that the inner shelf
currents tend to be upwelling (downwelling). These PC
variations are visually coherent with the local winds,
suggesting that the local winds are the main driver of
the inner shelf currents. Correlating this first-mode PC
with the major axis component of the wind time series
(similarly 2-day low-pass filtered) yields a lagged (6 h)
correlation coefficient of 0.77. These results are consis-

tent with the constant-density model results of Li and
Weisberg (1999a,b) and their associated definition of
the inner shelf.

b. SOM results

The same data are used for the SOM analysis except
that the data gaps and the temporal mean values are
retained. The SOM parameters are chosen as in Liu et
al. (2006b, 2007a) to be a 3 � 4 map size, rectangular
lattice, sheet shape, linear initialization, Epanechikov
(ep) neighborhood function with a radius of 1, and
batch training algorithm.

1) SYNOPTIC-SCALE VARIABILITY

The current structures extracted by the SOM are
shown in the top 12 panels of Fig. 4. For each frame of
the velocity time series, a best-matching unit (BMU) is
identified among the 12 SOM units according to the

FIG. 3. (top) First-mode eigenvector and (middle) its principal
component from a time-domain EOF analysis of 2-day low-pass-
filtered currents relative to (bottom) 30-day low-pass-filtered,
3-day subsampled winds at Venice. The across- and along-shelf
components are shown as vectors and filled contours, respectively.
Positive contour values denote northwestward along-shelf cur-
rents. Letters F, M, A, and N refer to February, March, April, and
November, respectively.
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minimum Euclidian distance (Kohonen 2001). Thus,
the BMU time series show the temporal variation of
these structures (Fig. 4, bottom panel). To quantify the
representation of each unit, a frequency of occurrence
is computed by summing the number of times that a
given unit is a BMU and dividing by the total record

length. Similar structures on the SOM are organized to
be neighboring units and dissimilar structures are lo-
cated farther away from each other. Thus coherent up-
welling, downwelling, and transitional structures are
found in the upper two rows, the bottom row, and the
third row of the SOM, respectively.

FIG. 4. SOM representation of the 2-day low-pass-filtered velocity data: (top) the 4 � 3 SOM and (bottom) the BMU time series. The
across- and along-shelf components are vectors and filled contours, respectively. The relative frequency of occurrence (%) of each
pattern is shown in the lower-left corner of each SOM unit.
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Among the upwelling and downwelling structures,
two extreme current patterns (units 9 and 4), occur with
along-shelf current core located around the 30-m iso-
bath and speeds exceeding 26 cm s�1. These extreme
current patterns correspond to the most severe synoptic
weather events, with frequencies of occurrence of 1%–
3%. The strong downwelling structure (unit 4) appears
mostly in September–October of each year (Fig. 4, bot-
tom panel), associated with tropical storms; an example
being the 19–22 September 1999 Tropical Storm Har-
vey event (Fig. 5, top panel). The strong upwelling
structure (unit 9) appears in autumn and winter be-
cause of the passage of strong extratropical cold fronts,
and also on the trailing side of tropical storms. Ex-
amples are the 21–24 January 2001 upwelling event by
a cold front (Fig. 5, bottom panel), and the 14–15 Sep-
tember 1999 event by Hurricane Floyd (Fig. 5, top
panel).

Except for these two extreme units, flow asymme-
tries are found between the upwelling (units 1, 2, and 5)
and downwelling (units 8 and 12) structures. In addition

to the asymmetries in intensity and across-shelf extent
of the coastal jet shown by Liu and Weisberg (2005b)
here the coastal jet core is found subsurface for up-
welling versus at the surface for downwelling. Also,
while weak, the across-shelf flows have opposite signs
near the surface and near the bottom at the 10-m iso-
bath for upwelling, whereas they vanish at the 10-m
isobath for downwelling; that is, across-shelf transport
for upwelling occurs across the entire inner shelf,
whereas it is inhibited in the shallower water (at the
10-m isobath) for downwelling. These asymmetries,
consistent with the findings of Weisberg et al. (2001),
cannot be seen in a single EOF mode.

To better appreciate the utility of the SOM in iden-
tifying patterns and their evolution consider zoom
views for the three months (September 1999, March
2000, and January 2001) shown in Fig. 5. From the
BMU time series we see the preference for numbers 9
and 1, and the adjacent units when the local winds are
upwelling favorable (directed southward), versus num-
ber 4 and 12 and their adjacent units when the winds

FIG. 5. Time series of Venice winds and the BMU for a 3-month interval.
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are downwelling favorable (directed northward). Note
that the BMU time series evolution is coherent with the
local winds, consistent with the winds being the main
driving force for the inner shelf current variability over
the synoptic weather band.

2) SEASONAL VARIABILITY

The SOM analysis of the 2-day low-pass-filtered data
also demonstrates a seasonal variation as seen in the
BMU time series (Fig. 4, bottom panel). While not
shown, we applied the same SOM analysis procedure to
15-day low-pass-filtered data and found upwelling
structures to prevail in autumn through spring months
and downwelling structures to prevail in summer months.

These SOM and EOF results on the seasonal cycle
agree with several previous analyses (Weisberg et al.
1996, 2005; He and Weisberg 2002, 2003; Liu and Weis-
berg 2005b; Weisberg et al. 2005). Hovmöller plots of
the near surface inner shelf currents (Fig. 6) also show
this clearly. From October to March the surface cur-
rents tend to be southeastward, whereas following a
transition in May, they tend to be northwestward from
June through September. Focusing on the 20-m isobath,
for which we have the longest record, Fig. 7 shows a
6-yr climatology for the along-shelf and across-shelf
current profiles. In the across-shelf direction a two-
layer structure is seen with near bottom onshore flow
and near surface offshore flow throughout the autumn
through spring months (October–May), and in the
along-shelf direction the currents tend to be southeast-
ward from autumn to spring and northwestward in sum-
mer. The spring transition takes longer than the au-
tumn transition, as also evidenced in temperature data
(Virmani and Weisberg 2003), because of convective
overturning in autumn versus more gradual heating in
spring. These results are in contrast with statements by
Ohlmann and Niiler (2005) who contend that the sea-
sonal variations in the WFS surface currents are not
pronounced. We attribute this to insufficient sampling
on the WFS by the drifters.

5. Across-shelf structure from hydrographic data

Autumn/winter and summer across-shelf distribu-
tions of the temperature, salinity, and baroclinic geo-
strophic currents are shown in Fig. 8 for both the Sar-
asota and Tampa Bay transects. The autumn/winter
(summer) composites are obtained by averaging the hy-
drographic data (and the relative geostrophic velocity)
from October to March (June–September). The rela-
tive geostrophic velocities are first calculated using the
hydrographic data in each cruise based on Eq. (10),
with zero reference levels at the bottom, and then av-
eraged over the specific months.

In autumn/winter the shelf waters are colder and
fresher near the coast than offshore. The higher salinity
water found offshore tends to move onshore along the
bottom and the lower salinity water found near shore
tends to move offshore near the surface, indicating an
upwelling circulation structure consistent with the
along-shelf baroclinic geostrophic currents being di-
rected southeastward. The baroclinic current core is lo-
cated between the 25–35-m isobaths (or 45–65 km off-

FIG. 6. Hovmöller plot of the near-surface temperature sampled
by CTD along the Tampa Bay transect and the 30-day low-pass-
filtered ADCP near-surface currents sampled along the Sarasota
transect. Blue triangles indicate the hydrographic cruises: CTD
station 1 is closest to shore, and station 10 is at the 50-m isobath.
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shore from the coast) along the Sarasota transect,
which has about the same location as those derived by
the EOF and SOM.

In summer, strong stratification is found in the tem-
perature structure that is due to increased insolation
and decreased wind mixing. Surface temperature ex-
ceeds 28°C, with the highest temperature near the
coast, and the downward bowing of the isotherms near
the bottom is consistent with a downwelling flow struc-
ture. An increase in salinity is due to evaporation, but
also noted are lower salinity near surface waters off-
shore. This is attributed to waters of Mississippi River
(and other northern river) origin that regularly flow
along the shelf break and midshelf (e.g., Gilbes et al.
1996; He and Weisberg 2002) in spring and summer.
Nearer to shore the baroclinic currents in summer are
weaker and generally northwestward, consistent with
the ADCP data.

6. Across-shelf sea surface height estimates

A method to combine the velocity, hydrography, and
wind data across the shelf for the purpose of estimating

SSH was proposed in section 3b. According to Eq. (9),
the across-shelf SSH distribution over synoptic and
longer time scales may be estimated from the across-
shelf distributions of the along-shelf vertically averaged
(barotropic) and baroclinic currents and the across-
shelf wind stress component.

a. Time scales longer than 15 days

1) RELATIVE SEA SURFACE HEIGHT ACROSS THE

INNER SHELF

The depth-averaged currents are obtained from ve-
locity profile data, low-pass filtered to exclude oscilla-
tions on time scales shorter than 15 days, subsampled
daily and rotated to the along-shelf direction. These
barotropic currents at the five mooring sites are inte-
grated in the across-shelf direction from the 50-m iso-
bath to the near shore to produce the �b contribution to
the SSH relative to the 50-m isobath according to Eq.
(8a). The �b values at the six integration points are then
linearly interpolated onto 10 locations equally distrib-
uted from the 50- to the 10-m isobaths along the
Sarasota transect. We similarly calculated the relative

FIG. 7. Climatological means of the 20-day low-pass-filtered winds (at the NOAA Buoy 42036) and currents (at
the EC4 mooring). The wind time series span 1994–2003, and currents span July 1998–February 2004.
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SSH distribution due to the baroclinic currents (�c)
from the monthly hydrographic data according to Eq.
(8b). These monthly �c values are interpolated to form
a daily time series for addition to �b. To calculate �w we
begin with 15-day low-pass filtered wind stress vectors,
daily subsampled, and rotated 27° clockwise to the
across-shelf direction. The across-shelf wind stress com-
ponent is then used to estimate �w at the 10 points
offshore from Sarasota according to Eq. (8c). The three
SSH components (�b, �c, �w) are then summed to-
gether to form a total SSH distribution relative to the
50-m isobath. We note that �c may also be estimated
from the vertical shears of the along-shelf velocity ac-
cording to Eq. (9). With �c by hydrography (current
shears) denoted by �c1 (�c2) the results are shown in
Fig. 9, including each of the individual terms and their
sums: �1 � �b � �c1 � �w and �2 � �b � �c2 � �w. In
general the SSH gradient is directed onshore during

autumn through spring (October to May) and off-
shore during summer (June through September). These
seasonal SSH variations are consistent with the EOF
and SOM velocity analyses. As expected, the depth-
averaged (barotropic) currents dominate the SSH gra-
dient variations across the inner shelf. The across-shelf
wind stress modifies the SSH to a lesser extent, mainly
over the shallowest region in winter. The baroclinic cur-
rents contribute constructively in the SSH seasonal
variation; that is, �c values at the coast are lower
(higher) than those at the 50-m isobath in winter (sum-
mer).

We note that �c values calculated by the two methods
do not agree in some months in Fig. 9. The hydro-
graphic data have higher spatial resolution in the
across-shelf direction, but are sampled monthly and
with some months absent data (Fig. 2), while the cur-
rent data have higher temporal resolution, but are

FIG. 8. Average across-shelf structures of (left) temperature, (middle) salinity, and (right) baroclinic geostrophic
current along the Tampa Bay and Sarasota transects during (top) the winter and (bottom) summer seasons.
Zero-velocity levels are set to be on the bottom in the baroclinic geostrophic current calculations. Winter structures
are averaged from October to March, and summer structures from June through September. The small solid
triangles designate the CTD locations.
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sparser in space. More observations (with higher reso-
lutions in space and time) would improve the analysis,
but the general features are consistent with one an-
other.

2) ABSOLUTE SEA SURFACE HEIGHT

The SSH variation in Fig. 9 are relative to the 50-m
isobath. If the absolute SSH at any one of the 10 com-

putation points is known, then the absolute SSH values
along the whole transect (10 points) can be calculated
by simply adding back the offset between absolute and
relative SSH at that point. The relative SSH at the shal-
lowest computation point (�) and the coastal sea level
at St. Petersburg (h) are shown in the top panel of Fig.
10. Here the coastal sea level is also 15-day low-pass
filtered and adjusted for the inverted barometer effect

FIG. 9. SSH estimates relative to that at the 50-m site as a function of time and distance from coast (x). (top to
bottom) The SSH components due to the barotropic currents (�b), the baroclinic currents (�c1, estimated from the
hydrographic data that are designated by the small open circles), and the across-shelf wind stress (�w); the total
relative SSH (�1 � �b � �c1 � �w); the SSH component due to baroclinic currents (�c2, estimated from the velocity
vertical shears); and the total relative SSH (�2 � �b � �c2 � �w), respectively. All of the time series are 15-day
low-pass filtered except the hydrographic data (and hence �c1).
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(using the air pressure at Venice) since we had set the
atmospheric pressure equal to zero in our derivation of
Eq. (8). Assuming that the absolute SSH at the shal-
lowest computation point may be approximated by the
adjusted sea level at St. Petersburg, the offset between
these two variables (h � �) can be used to estimate the
absolute SSH elsewhere. This offset can be regarded as
the absolute SSH at the initial integration point (i.e., at
the 50-m isobath). We note that despite the two meth-
ods for estimating �1 and �2, the estimated absolute
SSH at the 50-m isobath is very similar for both.

The variations at the 50-m isobath are larger than
those over the inner shelf. Some of this may be local
and due to a seasonal steric effect, while some may be
related to deeper water influences. We estimate the
local steric effect through the geopotential height D at
the 50-m isobath station calculated from the hydro-
graphic data according to

D�p1, p2� �
1
g �p1

p2

	�T, S, p� dp, �11�

where p1 and p2 are two reference pressure levels, �, T,
S, and p are specific volume anomaly, temperature, sa-
linity, and pressure, respectively. The result is shown
against the estimated absolute SSH at the 50-m isobath
in Fig. 10b. The estimated SSH compares well to the
geopotential height during the three years, which

means a portion of the 50-m SSH variation in the low-
frequency band is induced locally by the steric height
changes on the shelf.

We also compare the absolute SSH estimates at the
50-m isobath with the available satellite altimetry data.
We used the gridded sea level anomalies (1⁄3° � 1⁄3° on
a Mercator grid) merged from multisatellite altimetry
sensors (TOPEX/Poseidon or Jason-1 � ERS-1/2 or
Envisat) distributed by AVISO. By sampling a grid
point nearest to mooring EC2 (50 m) site, we overlay
the SSH anomaly by satellite altimetry on the SSH es-
timates in Fig. 10c. The comparison is good. Note the
SSH estimates are 15-day low-pass filtered and daily
subsampled, and the altimetry time series are sampled
in 7-day intervals.

b. Synoptic time scales

Since the SSH equations are derived from the mo-
mentum balance over the synoptic weather and longer
time scales, it is informative to check their validity at
shorter time scales. By using a two-day low-pass filter
on the velocity, sea level, and air pressure time series,
and the same integration and interpolation procedures
as before, we estimate the absolute SSH at the 50-m
isobath across the entire subtidal band (Fig. 11). Since
the procedures are linear the results overlay well, and

FIG. 10. Comparisons of the SSH estimates at low frequency (15-day low-pass filtered). (a) The total relative SSH
(�) estimated at the 10-m isobath and the sea level (h) observed at St. Petersburg, where �1 and �2 are the two
estimates of the total relative SSH differing by whether the baroclinic part is estimated from hydrographic data and
from current (vertical) shear, respectively. (b) Estimated SSH (h � �) and the geopotential height (D) calculated
from the hydrographic data at the 50-m isobath. (c) Estimated SSH (h � �) and the altimetry SSH anomaly
sampled from the 50-m isobath station.
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they show the relative variances between the synoptic
weather and seasonal time scales.

Last, it is instructive to consider the synoptic weather
band by itself by bandpass filtering the time series prior
to the SSH estimation procedure. The results are shown
in Fig. 12 for the band of 2–15 day. Zooming in for the
period July–December 2001 we see that the 10-m iso-
bath relative SSH estimates are highly correlated with
the St. Petersburg sea level, the EC5 (10-m isobath)
bottom pressure, and the local winds. This suggests that
the primarily wind-driven inner shelf circulation is
mainly responsible for the coastal sea level variation on
the synoptic time scale. We note that the estimated SSH
amplitudes are closer to those of the EC5 bottom pres-
sure and smaller than those at the St. Petersburg. This
may be explained by the following two factors. First,
the St. Petersburg tide gauge is located midway up
Tampa Bay so it experiences additional setup/down by
local wind effects within the bay. Second, the synoptic-
scale variation occurring offshore of the 50-m isobath
are not taken into account in these estimates. Actually,
the absolute SSH at the 50-m isobath, estimated as the
difference between the observed absolute (h) and esti-
mated relative SSH (�) at the EC5 (Fig. 12, third
panel), is also correlated with the observed coastal sea
levels and the winds. The decrease of the SSH ampli-
tudes from the coast (St. Petersburg), offshore to the
10- and 50-m isobaths is consistent with previous find-
ings (Marmorino 1983b; Mitchum and Clarke 1986a).
The fact that the agreement is so good at the EC5 bot-
tom pressure gauge suggest that most of the inner shelf
dynamical adjustment does indeed occur inshore of the
50-m isobath, and this is consistent with the model dy-
namics analysis presented by Li and Weisberg (1999b).

By zooming in on a subset of the analysis Fig. 12 also
shows how the three SSH components are additive to
the total relative SSH estimates. For the full record
length, the standard deviations of �b, �w, and �c are 2.6,
1.8, and 1.2 cm, respectively. Thus, among the three
dynamical variables, the along-shelf barotropic currents
make the largest contribution to the inner shelf sea
level variations (included in Mitchum and Clarke
1986a), the across-shelf wind stress is of secondary im-

portance, and the along-shelf baroclinic currents have
the smallest effect. Cragg et al. (1983) reported that
WFS sea level response was a maximum for along-shelf
winds; across-shelf winds did not produce sea level fluc-
tuations that were statistically reliable. Our analysis
shows that the across-shelf winds also play an important
role in changing inner shelf SSH, especially during
strong weather events (Fig. 12, bottom panel).

7. Summary and discussions

Using velocity profile time series from an across-shelf
moored array spanning the interval September 1998 to
December 2001, we described the across-shelf struc-
tures of the inner WFS current variability on synoptic
and longer time scales. From two-day, low-pass-filtered
data, a coherent wind-driven coastal upwelling/down-
welling structure was revealed by the first mode EOF:
an along-shelf coastal jet with a current core located
around the 25–30-m isobaths, and oppositely directed
across-shelf flows at the near surface and near bottom
levels, consistent Ekman–geostrophic inner shelf dy-
namics (e.g., Li and Weisberg 1999b; Weisberg et al.
2000). Additional important details were extracted by
the SOM: strong upwelling and downwelling flow struc-
tures associated with extreme weather forcing, moder-
ate, asymmetric upwelling and downwelling flow struc-
tures driven by moderate weather forcing, and a set of
transitional structures with weak currents. The varia-
tions of these structures are coherent with local winds
on synoptic weather time scales. On seasonal and
longer time scales, the circulation is predominantly up-
welling during autumn through spring months (Octo-
ber–April) and downwelling during summer months
(June–September). These upwelling/downwelling
across-shelf structures provide observational evidence,
as well as new insights, to the schematics of coastal
upwelling/downwelling regimes of Huyer (1990). They
also have important implications for the transports of
nutrients and other water properties across the shelf.

The coherent seasonal variation of the WFS currents,
as revealed by the EOF, the SOM, a Hovmöller plot of
the near surface currents, and a 6-yr climatology of
current profiles at the 20-m isobath, agrees with previ-

FIG. 11. Similar to Fig. 10c, but for the 2-day low-pass-filtered �2.
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ous data analysis and numerical modeling results
(Weisberg et al. 1996; He and Weisberg 2002, 2003; Liu
and Weisberg 2005b; Weisberg et al. 2005). We there-
fore disagree with the Ohlmann and Niiler (2005) state-
ment that the seasonal variations of the WFS surface
currents are not pronounced, and we attribute this dif-
ference in dataset interpretation to insufficient sam-
pling by drifters on the WFS.

On seasonal and longer time scales, the asymmetry in
upwelling/downwelling structures is consistent with an
asymmetry in the wind forcing. Winter upwelling favor-
able winds are much stronger than summer down-
welling winds, as shown in Figs. 2 and 7. On the syn-
optic weather scale, the asymmetry is also due to strati-
fication. Weisberg et al. (2001) using model twin
experiments, one with and the other without stratifica-
tion, explained the observed WFS response asymmetry

as a consequence of thermal wind effects on the bottom
Ekman layer. Increased mixing for extreme events
would therefore tend to mitigate this effect. This syn-
optic weather–scale asymmetry, with larger upwelling
than downwelling responses, is consistent with the
works of Weatherly and Martin (1978), Trowbridge and
Lentz (1991), MacCready and Rhines (1991), and Gar-
rett et al. (1993) when consideration is given to the
process of Ekman–geostrophic spinup. With regard to a
streamwise vorticity balance, by adding constructively
(destructively) with planetary vorticity tilting by the
sheared, along-shelf jet, buoyancy torque enhances (de-
creases) the dissipation required in the bottom Ekman-
layer underupwelling (downwelling). This results in a
larger upwelling response that extends farther offshore.

WFS circulation is driven by a combination of local
and remote forcing (Weisberg and He 2003). Coastal

FIG. 12. (top) Time series of wind and SSH estimates at the synoptic weather band (2-day �15-day bandpass
filtered). (upper middle) The total relative SSH (�) estimated at the 10-m isobath and the sea level (h) observed
at St. Petersburg and mooring EC5 (converted from bottom pressure records). (lower middle) The difference
between the observed and estimated SSH (h � �). (bottom) The three SSH components estimated at the 10-m
isobath, due to barotropic currents (�b), baroclinic currents (�c), and across-shelf wind stress (�w), respectively.
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sea level variations can also be apportioned that way;
that is, by the local dynamical response of the inner
shelf circulation to local meteorological forcing and by
SSH variations occurring farther offshore and as mani-
fest at the 50-m isobath. The local dynamical response
can further be partitioned into three parts; that is, the
SSH responses due to the along-shelf depth-averaged
(barotropic) currents, the baroclinic currents, and the
across-shelf wind stress. On long time scales, the off-
shore SSH change dominates, and a significant portion
of the 50-m isobath SSH variation is due to the local
steric height changes, whereas on synoptic weather
time scales the inner shelf wind-driven circulation re-
sponses are controlling. Among the three dynamical
variables, the barotropic currents make the largest con-
tribution to the inner shelf SSH variations, the across-
shelf wind stress is the secondary contributor, and the
baroclinic currents make the smallest contribution.

On long time scales, the SSH estimated at the 50-m
isobath as the residual between the coastal sea level and
the inner shelf dynamical responses compared well to
satellite altimetry, thus providing a basis for calibrating
satellite altimetry on the shelf. An error analysis of the
largest SSH component (barotropic contribution) show
that this approach is feasible. Equation (8a) can be ap-
proximated as �� � Lfg�1��, where L is the across-
shelf distance. For the WFS inner shelf, where L � 90
km, f � 0.66 � 10�4 s�1, and g � 10 m s�2, a �� of 2 cm
s�1 can only induce a �� of 1 cm, which is smaller than
accuracy (2 cm) of the GPS altimetry (Treuhaft et al.
2001). On synoptic time scales, the SSH estimates are
coherent with the bottom pressure records, coastal sea
level, and local winds. So while seasonal SSH variations
are largely of offshore origin, at synoptic weather scales
these are primarily by the inner shelf dynamical adjust-
ments that occur inshore of about the 50-m isobath (Li
and Weisberg 1999b).
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